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Purpose. The aim of this study was to develop quantitative structureYactivity/pharmacokinetic

relationships (QSAR/QSPKR) for a series of synthesized 1,4-dihydropyridines (DHPs) and pyridines

as P-glycoprotein (P-gp) inhibitors.

Methods. Molecular descriptors of test compounds were generated by 3D molecular modeling using

SYBYL and KowWin programs. Forward inclusion coupled with multiple linear regression (MLR) was

used to derive a QSAR equation for Ca2+ channel binding. A multivariate statistical technique, partial

least square (PLS) regression, was applied to derive a QSAR model for P-gp inhibition and QSPKR

models. Cross-validation using the Bleave-one-out^ method was performed to evaluate the predictive

performance of models.

Results. For Ca2+ channel binding, the MLR equation indicated a good correlation between observed

and predicted values (R2 = 0.90), and cross-validation confirmed the predictive ability of the model (Q2

= 0.67). For P-gp reversal, the model obtained by PLS could account for most of the variation in P-gp

inhibition (R2 = 0.76) with fair predictive performance (Q2 = 0.62). Nine structurally related 1,4-DHP

drugs were used for QSPKR analysis. The models could explain the majority of the variation in

clearance (R2 = 0.90), and cross-validation confirmed the prediction ability (Q2 = 0.69).

Conclusion. QSAR/QSPKR models were developed, and the QSAR models were capable of identifying

synthesized 1,4-DHPs and pyridines with potent P-gp inhibition and reduced Ca2+ channel binding. The

QSPKR models provide insight into the contribution of electronic, steric, and lipophilic factors to the

clearance of DHPs.

KEY WORDS: dihydropyridines (DHPs); multidrug resistance (MDR); P-glycoprotein (P-gp);
quantitative structureYactivity relationship (QSAR); quantitative structureYpharmacokinetic relationship
(QSPKR).

INTRODUCTION

Multidrug resistance (MDR) remains a serious limita-
tion to successful chemotherapy in metastatic cancers. It is
believed that overexpression of P-glycoprotein (P-gp), a 170-
kDa efflux pump, is associated with insufficient accumulation
of anticancer drugs into tumor cells (1). A large number of
structurally diverse compounds have been identified as MDR
modulators, which can reverse drug efflux mediated by P-gp.
1,4-Dihydropyridines (DHPs) have affinity for P-gp at a site
that allosterically interacts with other drug acceptor sites (2).
Therefore, 1,4-DHPs emerged as good drug candidates and
became the most extensively investigated compounds as P-gp
reversal agents (3). 1,4-DHPs are also well known as calcium
channel blockers, and the major setback to the use of 1,4-
DHPs as clinical MDR modulators is the dose-limiting
cardiovascular toxicity (4).

Recently, 3D molecular modeling has been applied to
develop quantitative structureYactivity relationship (QSAR)
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models of structurally related drugs with MDR modulating
activity (5,6). In these studies, conformational profiles of
compounds were investigated to obtain insight into which
conformations are involved in the interaction with biological
targets. Furthermore, with the application of multivariate
statistical analysis, quantitative structureYpharmacokinetics
relationship (QSPKR) models were also developed based
on various molecular physicochemical descriptors generated
by 3D modeling software (7). The purpose of this study was
to develop QSAR for 1,4-DHPs and pyridines based on 3D
molecular descriptor methods and to identify 1,4-DHPs and
pyridines with potent P-gp inhibition and reduced toxicity
(Ca2+ channel binding). Furthermore, the pharmacokinetic
parameters (clearance and volume of distribution) of the
newly synthesized compounds were also predicted based on
multivariate QSPKR analysis to identify compounds with
suitable pharmaceutical properties for further evaluation.

MATERIALS AND METHODS

Chemicals

Compounds IaYIq and IIaYIIp were synthesized in
Professor Robert Coburn’s laboratory, Department of Chem-
istry, University at Buffalo. The chemical structures of these
newly synthesized compounds are shown in Fig. 1, and the
synthesis is described in a recent publication (8).

P-gp Inhibition and Pharmacokinetic Data

The determination of the inhibition constant Ki for Ca2+

channel binding was conducted using rat cerebral cortex
membrane preparations. The Ki values were obtained from
the literature (9) for the following selected 1,4-DHP Ca2+

Fig. 1. Chemical structures of newly synthesized 1,4-dihydropyridines (I), 4-aryl-pyridines (II), and

selected calcium channel blockers.
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channel blockers: isradipine, nicardipine, amlodipine, felodi-
pine, nifedipine, nimodipine, nisodipine, and nitrendipine.

The P-gp modulation effect of the newly synthesized
compounds were evaluated by [3H]vinblastine (VBL)
accumulation and daunomycin (DNM) cytotoxicity studies
in MCF-7/adr cells, which are resistant human breast cancer
cells. P-gp reversal activity was characterized using the
log(MDR ratio) and IC50 of DNM cytotoxicity. MDR ratio
is the percentage increase of VBL accumulation compared to
the vehicle control. The pharmacokinetic data of selected
compounds were obtained from the literature (10,11).

Molecular Modeling

Compound structures were sketched in a Silicon Graphic
workstation using SYBYL molecular modeling software
(Tripos, Inc., version 6.7, St. Louis, MO, USA). Charges
within compounds were calculated using the Gasteiger
method. The energy minimization was initially carried out
based on both electrostatic and steric components using
Tripos force field minimizer (MAXMIN 2) to gradient
convergence (criteria used: gradient energy change, 0.01
kcal/Å; rms displacement, 0.001 Å; nonbonded cutoff, 8.000
Å; dielectric function, distant dependent; dielectric constant,
1.00), followed by MOPAC AM1 geometry optimization.

Thirteen physicochemical descriptors were generated by
SYBYL molecular modeling software. These descriptors
were calculated by the MOPAC module in SYBYL using
the Austin Model 1 (AM1) singlet method with the precision
option activated and a time limit of 1 h for convergence.
LogP was calculated by KowWin program (Syracuse Re-
search Corporation, Syracuse, NY, USA).

The electronic descriptors include heat of formation,
filled levels, energy of the lowest unoccupied molecular
orbital, energy of the highest occupied molecular orbital,
electronic energy, total energy of the molecule, and ionization

potentials. Four steric descriptors were calculated in the
present study, namely, coreYcore repulsion, molecular weight,
polar surface area, Connolly surface area, and Connolly
surface volume. The Connolly surface area (solvent accessible
area) is defined as the area a theoretical water molecule
(1.4 Å in diameter) produces when it moves over the van der
Waals surface of a ligand.

Data Analysis

An automatic forward stepwise inclusion method com-
bined with multiple linear regression (MLR) was applied to
derive a QSAR model for Ca2+ channel binding. The
descriptor entry and exit tests were considered significant at
an a = 0.05. The predictive performance of the final model
was tested by cross-validation using the Bleave-one-out^
method (7,12). Briefly, a statistical model is redeveloped
with a compound removed from the dataset. Subsequently,
the model is used to predict the biological target of the
removed compound (Ypred). The process is repeated until
each compound in the dataset is removed and predicted once.
The cross-validated R2, also called Q2, is calculated according
to the following equation:

Q2 ¼ 1�
X

Ypred � Yobs

� �2
.X

Ypred � Ymean

� �2 ð1Þ

A model with good internal predictive performance will have
Q2 value close to 1. A Q2 with a negative value indicates
chance correlations.

Partial least square (PLS) regression is a multivariate
statistical method that is widely applied in the QSAR
area. In contrast to MLR, PLS can deal with the situation
when the number of descriptors is greater than the number
of compounds/observations and colinearity between the
descriptor variables. PLS is also likely to be a robust method
when a dataset is ill-conditioned (13). In this study, PLS

Fig. 1. Continued.
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regression was applied to develop QSPKR models and
QSAR analysis for P-gp inhibition. Cross-validation using
Bleave-one-out^ was also performed to evaluate the predic-
tive ability of models.

All MLR and PLS calculations were performed using
the SAS statistical package (version 8.2, SAS Institute Inc.,
Cary, NC, USA).

RESULTS

Generation of Molecular Descriptors

A summary of molecular descriptors calculated by
SYBYL and KowWin computer programs is listed in Table I.
Lipophilicity has been long viewed as an important factor in
QSAR/QSPKR analysis. Among the several different
methods for estimating LogP values of these compounds,
the KowWin method was employed based on the superior
performance of this method in experimental studies reported
by Meylan and Howard (14), who checked the validity of
LogP calculations for the substructure method KowWin
and the whole-molecule approach SciLogP by comparing
the values with the experimental LogP determined for a
set of 180 molecules, composed of 90 simple organics and
90 more complex drug molecules. On the basis of the av-

eraged absolute residual sums, the superiority of KowWin to
SciLogP was observed for the entire dataset (14).

QSAR for Ca2+ Channel Binding

The calcium channel binding activities for the 14 com-
pounds that exhibited quantifiable activity are listed in Table II
and included in the QSAR analysis for Ca2+ channel binding.
All other compounds tested had negligible activity in this
assay. The final QSAR equation for calcium channel binding
can be expressed as follows:

log 1=Ki ¼ �0:0000453 � COCOþ 0:163 �DIPOþ 9:484

R2 ¼ 0:90; Q2 ¼ 0:67; n ¼ 14
� �

ð2Þ

This MLR model for Ca2+ channel binding indicated a
good correlation between the predicted and observed data
(R2 = 0.90) and fair predictive performance (Q2 = 0.67). It
seems that coreYcore repulsion, a steric factor reflecting the
geometry (bond length, angles, etc.) of a molecule, and
dipole moment are highly associated with the Ca2+ channel
binding activity of a compound. The relationship between the
predicted and observed log(1/Ki) is illustrated in Fig. 2.

Table I. Physicochemical Descriptors of 1,4-DHPs and 4-Aryl-Pyridines

Compound HEFO DIPO IOPO MW COAR COVO LUMO HOMO LogP TOEN COCO FILE ELEN PSA

Ia j64.63 4.24 9.02 609.7 574.1 620.2 j0.82 j9.02 6.84 23.28 67,737 117 j75,422 135.2

Ib j104.9 4.7 8.64 594.7 579.8 626.3 j0.37 j8.64 7.10 21.61 65,026 115 j72,357 65.68

Ic j97.2 4.57 8.61 608.8 600.3 644.9 j0.35 j8.61 7.59 21.68 67,432 118 j74,918 59.8

Id j56.82 2.89 8.12 697.8 599.1 651.0 j0.25 j8.12 7.20 25.27 67,884 118 j75,270 54.54

Ie j28.21 3.85 8.44 670.8 630.8 718.1 j0.14 j8.44 8.81 19.98 78,769 129 j86,920 61.18

Ig j144.4 2.71 8.73 622.8 603.9 648.2 j0.41 j8.73 6.62 22.36 69,440 120 j77,219 81.86

Ij j89.4 4.91 8.74 580.7 561 607.1 j0.41 j8.74 6.54 20.60 62,589 112 j69,764 106.2

Ik j110.9 4.27 8.81 580.7 560.3 606.9 j0.42 j8.81 6.54 20.60 62,996 112 j70,172 106.2

Il j118.4 4.92 8.64 594.7 577.8 626.3 j0.39 j8.64 7.09 21.50 65,252 115 j72,583 99.9

Im j139.8 4.33 8.77 624.8 600.7 630.5 j0.44 j8.77 6.66 22.50 71,118 121 j78,925 63.4

In j147.6 5.12 8.77 622.8 591.3 636.8 j0.43 j8.77 6.78 21.24 70,129 120 j77,908 83.9

Io j125.9 4.32 8.62 608.7 574.5 623.4 j0.46 j8.62 7.08 33.50 67,235 117 j74,858 92.5

Iq j124.1 4.62 8.61 636.8 639.4 683.4 j0.36 j8.61 8.57 22.60 71,979 124 j79,778 58.46

IIa j50.9 7.58 9.27 607.7 570.2 615.1 j1.11 j9.27 7.49 17.00 66,887 116 j74,544 122.2

IIb j94.8 1.68 9.11 592.7 576.8 618.8 j0.59 j9.11 7.75 16.90 64,841 114 j72,144 50.5

IIc j100.2 1.95 9.07 606.8 597.5 637.3 j0.57 j9.07 8.24 16.99 67,186 117 j74,645 42.49

IId j48.2 3.61 8.38 605.8 593.8 642.6 j0.48 j8.38 7.85 20.50 67,627 117 j74,986 39.6

IIm j119.3 5.05 9.29 622.8 590.5 651.4 j0.98 j9.29 7.32 24.80 72,726 120 j80,504 97.2

IIn j136 3.76 9.22 620.7 588.1 634.5 j0.67 j9.22 7.72 16.60 69,874 119 j77,625 65.7

IIo j114.8 1.3 9.07 606.7 572.9 613.7 j0.68 j9.07 7.73 29.00 67,293 116 j74,888 74.9

IIp j107.1 4.31 9.05 620.8 600.9 660.5 j0.58 j9.05 8.73 16.23 70,810 120 j78,424 49.63

Isradipine j7.36 10.11 8.60 371.4 339.5 368.6 j1.92 j8.60 3.48 24.51 33,789 71 j38,728 142.7

Nicardipine j91.0 12.3 9.1 493.6 471.4 495.6 j0.72 j9.1 3.90 18.17 49,561 95 j55,985 129.8

Amlodipine j111.4 2.6 9.33 422.9 372.5 438.9 j0.18 j9.33 2.07 6.30 41,389 79 j46,837 131.1

Felodipine j133.1 7.34 8.72 384.3 339.0 361.3 j0.22 j8.72 4.46 9.56 30,483 67 j35,285 47.87

Nifedipine j111.4 2.75 8.85 346.3 301.3 327.6 j0.54 j8.8 2.50 13.04 31,070 66 j35,827 100.1

Nimodipine j168.9 6.44 9.04 418.4 403.7 413.9 j0.86 j9.04 3.13 14.90 41,420 81 j47,121 132.5

Nisodipine j111.1 9.6 8.15 389.4 326.9 397.6 j4.91 j8.94 3.90 11.80 37,393 75 j42,630 104.3

Nitrendipine j58.1 8.7 9.94 360.4 332.2 352.2 j1.06 j9.94 2.99 13.40 32,382 69 j37,293 156.4

DHPs, Dihydropyridines; HEFO, heat of formation; FILE, filled levels; LUMO, energy of the lowest unoccupied molecular orbital; HOMO,

energy of the highest occupied molecular orbital; ELEN, electronic energy; TOEN, total energy of the molecule; IOPO ionization potentials;

COCO, coreYcore repulsion; MW, molecular weight; PSA, polar surface area; COAR, Connolly surface area; COVO, Connolly surface volume.
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QSAR for P-gp Inhibition

Table III shows the results from VBL accumulation and
DNM cytotoxicity studies. The results are log-transformed to
accommodate the QSAR analysis. For a set of ill-conditioned
data, PLS regression represents a good alternative to the more
classical MLR and principal component analysis and is likely
to result in a more robust predictive model (15). The summary
of PLS regression for log(MDR ratio) and log(1/IC50) is
shown in Table IV. The PLS model for log(MDR ratio) using
the P-gp inhibition data from VBL accumulation studies
could account for 62.9% of the variation of the observed
values. The model for log(1/IC50) showed fair correlation
between the observed and predicted values (R2 = 0.76). The
predictability of this model was evaluated by cross-validation
(Q2

LogMDR = 0.40, Q2
Log1/IC50 = 0.62), which indicates that

the model should be used with caution in estimating log(1/
IC50). The relationship between the predicted and observed
P-gp modulation effects of compounds from the two studies is
shown in Fig. 3.

QSPKR of Selected 1,4-DHPs

Clearance (CL) and volume of distribution (V) values of
selected 1,4-DHPs are listed in Table V. QSPKR models,
obtained by PLS regression, were built using the 14 molec-
ular descriptors listed in Table I. The results of PLS regres-
sion for CL and V are summarized in Table VI. The QSPKR
model for volume of distribution can explain nearly 70%
variation of the data. Most of variation in clearance can be
accounted for by the PLS model (R2 = 0.90). The predictive
performance of PLS model is fair for clearance (Q2 = 0.69)
and relatively poor for V (Q2 = 0.43). The high values of R2

and Q2 for each model indicated model fair predictability and
adequate extracted components (16). The relationship between
the predicted and observed pharmacokinetic parameters is
shown in Fig. 4.

DISCUSSION

1,4-DHPs possess both Ca2+ channel blocking and P-gp
inhibitory activities. As such, the use of 1,4-DHPs as clinical
multidrug resistance modifiers poses therapeutic problems
because of their potential vasodilator activity. Based on the
results from previous structureYactivity relationship studies, a
series of 1,4-DHPs and pyridine compounds have been
synthesized to increase P-gp reversal and reduce Ca2+

Table II. Calcium Channel Binding Activity Values for the Test

Compoundsa

Compound Ki (nM) log(1/Ki)

Ie 157.3 6.80

Ig 287.9 6.54

In 310.3 6.51

Iq 102.3 6.99

IIc 56.7 7.25

IIp 74.3 7.13

Israpdipine 0.12 9.92

Nicardipine 1.16 8.94

Amlodipine 24.3 7.61

Felodipine 0.28 9.55

Nifedipine 6.67 8.18

Nimodipine 0.4 9.40

Nisodipine 0.4 9.40

Nitrendipine 0.62 9.21

a All other newly synthesized dihydropyridine compounds had

negligible calcium channel blocking activity at concentrations as

high as 3 mM. Log(1/Ki) values were calculated using Ki values

expressed as M concentrations.

Fig. 2. Relationship between observed and predicted log(1/Ki)

(dashed line represents the line of identity).

Table III. Vinblastine Accumulation (log MDR Ratio) and Cyto-

toxicity (DNM IC50) Values for the Test Compounds

Compound log(MDR ratio) log(1/IC50)

Ia 0.9593 5.86

Ib 1.0344 5.61

Ic 0.9031 5.48

Id 0.8555 5.42

Ie 0.8740 5.71

Ig 0.6562 5.72

Ij 0.8212 5.66

Ik 0.9265 5.88

Il 0.8915 6.40

Im 1.0944 6.49

In 1.0314 6.00

Io 1.1022 6.00

Iq 1.1360 6.04

IIa 1.0240 6.09

IIb 0.9160 5.66

IIc 1.0987 6.37

IId 0.9688 5.98

IIm 0.9996 6.15

IIn 0.9796 6.39

IIo 1.0171 5.93

IIp 1.1882 6.28

Log(1/IC50) values were calculated using IC50 values expressed as M

concentrations.

Table IV. Summary of Partial Least Square (PLS) Regression

Analysis Using log(MDR Ratio) and log(1/IC50)

Properties No. of components Q2 R2

log(MDR ratio) 6 0.40 0.63

log(1/IC50) 6 0.62 0.76
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channel binding activities. In this study, our purpose was to
identify compounds from this series of 1,4-DHPs and
pyridines with potent P-gp inhibitory effects, minimal Ca2+

channel binding (to reduce potential side effects), and pre-
dicted low clearance, based on QSAR/QSPKR predic-
tion models.

1,4-DHPs have been evaluated in several QSAR studies
regarding their calcium channel blocking activity (17,18) and
P-gp modulation effect (19). Coburn et al. (18) found that

including steric terms in QSAR equations yielded a good
correlation between structure and Ca2+ channel binding data
for a set of 46 1,4-DHPs. In the present study, coreYcore
repulsion, a steric descriptor indicating the geometry of a
molecule (20) (atomic numbers, bond lengths, bond angles,
and dihedral angles), has considerable influence in the Ca2+

channel binding activity of a compound. The dipole moment
also has a significant contribution, which was previously
observed in another series of Ca2+ antagonists whose dipole
properties were shown to play an important role in long-range
ligand-receptor recognition and subsequent binding (21).
Dipole moments, which are the quantitative measurements
of separation of charge, could describe direct drugYreceptor
interactions between 1,4-DHPs and calcium channels through
noncovalent bonding (22).

Fig. 3. Relationship between observed and predicted (A) log(1/IC50)

and (B) log(MDR ratio) (dashed line represents the line of identity).

Table V. Pharmacokinetic Parameters of Selected 1,4-Dihydropyr-

idine Calcium Channel Blockers

Compound Clearance (l/h) V (l/kg)

Israpdipine 44.1 70

Nicardipine 0.48 0.275

Amlodipine 0.42 21.4

Felodipine 49.4 9.7

Nifedipine 0.234 0.28

Nimodipine 0.84 0.94

Nisodipine 0.96 2.3

Nitrendipine 2.07 6.6

Dexniguldipine 36.9 17.04

Table VI. Summary of PLS Regression of Clearance and Volume

of Distribution of the Selected 1,4-DHPs

PK parameters No. of components Q2 R2

Clearance 5 0.69 0.90

Volume of distribution 4 0.43 0.70

Fig. 4. Relationship between observed and predicted (A) apparent

volume of distribution (V ) and (B) clearance (CL) (dashed line

represents the line of identity).
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In the QSPKR analysis, the number of predictors
(molecular descriptors) exceeds the number of compounds.
In this case, ordinary MLR regression would not be suitable
for developing meaningful and robust statistical models.
Therefore, a multivariate statistical technique, partial least
square (PLS) regression, was applied. PLS regression is a
relatively new technique that generalizes and combines
features from principal component analysis and multiple
regression. When the number of predictors exceeds the
number of observations (which is often the case in QSAR/
QSPKR studies), it is likely to obtain a model that fits the
sampled data perfectly but that will fail to predict new data
well; this phenomenon is called overfitting. In such cases,
although there are many manifest factors, there may be only
a few underlying or latent factors (also called components)
that account for most of the variation in the response. The
goal of PLS is to extract these latent factors, accounting for
as much of the manifest factor variation as possible while
modeling the response well (13). The optimal number of
components in PLS is usually determined by some heuristic
technique based on the amount of residual variation.
Another approach is to construct the PLS model for a given
number of factors on one set of data and then to test it on

another, choosing the number of extracted factors for which
the total prediction error is minimized (13). Because of the
relatively small dataset, the optimal number of PLS compo-
nents is chosen by the number of components that maximizes
Q2 by leave-one-out cross-validation (7).

The PLS regression models can be expressed in terms of
regression coefficients (bPLS):

Y ¼ X
�

bPLS þ F

where Y is the dependent variable matrix (e.g., biological
activities), X are the predictors (e.g., molecular descriptors),
and F is the residual matrix. The regression coefficients can
be useful in determining the influence of each variable in X in
the model (16).

QSPKR models for volume of distribution and clearance
can be qualitatively interpreted based on weighted PLS
regression coefficients (Fig. 5). LogP and heat of formation
were important in the systemic clearance of these com-
pounds. High lipophilicity was associated with high clearance.
Polar surface area (the sum of molecular surface of polar
atoms, usually oxygens, nitrogens, and attached hydrogens)
was inversely related with CL, which is in accordance with

Fig. 5. Weighted partial least square (PLS) regression coefficients

for (A) CL and (B) apparent volume of distribution (V).

Fig. 6. Weighted PLS regression coefficients for P-gp modulation:

(A) log(1/IC50); (B) log(MDR ratio).
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reports that lower polar surface area is associated with
greater bioavailability (23,24). The roles of the remaining
molecular descriptors were less important in the prediction of
clearance. Heat of formation, a descriptor indicating the
intrinsic energy of a compound, apparently has high impact
on both clearance and apparent volume of distribution, which
was also observed in a previous QSPKR study (7). The poor
predictive performance of the PLS model for volume of
distribution values is likely a result of the limited range of
values for V for the compounds used in the evaluation.

The results of the QSAR analyses from our two P-gp
modulation studies are comparable. Among the 14 descrip-
tors, the 8 leading descriptors, which have relatively high
contributions in the two studies, are quite similar based on
PLS regression coefficients (Fig. 6). LogP seems to be highly
correlated with P-gp inhibitory effect in DNM cytotoxicity
(log 1/IC50). This result is in accordance with the observa-
tions from other QSAR studies where the role of lipophilicity
of a compound in MDR reversal activity was reported (6,25).
The QSAR results from both VBL accumulation and DNM
cytotoxicity studies demonstrate that COVO, a steric de-
scriptor indicating solvent accessible volume of a molecule,
and HEFO are inversely related to P-gp modulation activity.

In the present study, we have developed QSAR/QSPKR
models based on 3D molecular modeling and multivariate
statistical analysis to evaluate a series of new compounds hav-
ing potent in vitro P-gp inhibition and minimal calcium
channel antagonistic activities. Seven of the synthesized com-
pounds, Ia, Ij, Ik, Im IIa, IIm, and IIn, were selected for further
in vivo animal studies based on their prominent P-gp inhi-
bition, negligible Ca2+ channel binding activity, and relatively
low systemic clearance predicted by our QSPKR models.

The statistical approaches to QSAR/QSPKR used in this
investigation can capture the linear relationships between
molecular descriptors and biological targets. Because only a
limited number of compounds were included in the present
study, a larger dataset would be required to validate the
current QSAR/QSPKR models. The methodology may
facilitate the further integration of QSAR/QSPKR in drug
discovery and preclinical development.
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